Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 14(10): e30935, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36337780

RESUMO

Ascaris lumbricoides infestation can cause a variety of intestinal complications, but severe gastrointestinal bleeding is rare. A thorough evaluation is needed for travelers and migrants with massive gastrointestinal bleeding, especially in those patients who have undergone multiple upper and lower endoscopies with no certain cause. We present a challenging case of massive small bowel bleeding due to Ascaris infection.

2.
J Invertebr Pathol ; 183: 107626, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34081963

RESUMO

Nematodes as plant pathogens adversely affect food, fiber, and biofuels production by causing plant diseases. A variety of chemical nematicides are being applied to soil, seeds, or foliage with a goal of disease prevention. Despite the proven efficacy of these chemicals against plant-parasitic nematodes, factors like prolonged residual toxicity to human health, environmental pollution, and the risk of resistance development can't be neglected. Due to these reasons, many chemicals are being banned continuously or delimited in the crop production system. Alternatively, the need for long-term strategies and integrative approaches to control plant diseases is inevitable. Trichoderma spp. are widely used in agriculture as biological control agents (BCA). To our knowledge, either very little or no information available on the most recent developments regarding Trichoderma-mediated biological control of plant-parasitic nematodes. This review summarizes the recent advances in using Trichoderma as BCA and plant growth regulator with a special focus on plant-parasitic nematodes.


Assuntos
Agentes de Controle Biológico/farmacologia , Nematoides/fisiologia , Desenvolvimento Vegetal , Doenças das Plantas/prevenção & controle , Trichoderma/fisiologia , Animais , Doenças das Plantas/parasitologia
3.
J Integr Plant Biol ; 63(3): 494-509, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33347703

RESUMO

Both plant receptor-like protein kinases (RLKs) and ubiquitin-mediated proteolysis play crucial roles in plant responses to drought stress. However, the mechanism by which E3 ubiquitin ligases modulate RLKs is poorly understood. In this study, we showed that Arabidopsis PLANT U-BOX PROTEIN 11 (PUB11), an E3 ubiquitin ligase, negatively regulates abscisic acid (ABA)-mediated drought responses. PUB11 interacts with and ubiquitinates two receptor-like protein kinases, LEUCINE RICH REPEAT PROTEIN 1 (LRR1) and KINASE 7 (KIN7), and mediates their degradation during plant responses to drought stress in vitro and in vivo. pub11 mutants were more tolerant, whereas lrr1 and kin7 mutants were more sensitive, to drought stress than the wild type. Genetic analyses show that the pub11 lrr1 kin7 triple mutant exhibited similar drought sensitivity as the lrr1 kin7 double mutant, placing PUB11 upstream of the two RLKs. Abscisic acid and drought treatment promoted the accumulation of PUB11, which likely accelerates LRR1 and KIN7 degradation. Together, our results reveal that PUB11 negatively regulates plant responses to drought stress by destabilizing the LRR1 and KIN7 RLKs.


Assuntos
Adaptação Fisiológica , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Secas , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Quinases/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Arabidopsis/genética , Mutação/genética , Ligação Proteica , Estresse Fisiológico , Ubiquitina-Proteína Ligases/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-32582649

RESUMO

CATH-2TP5 is a linear cationic hybrid peptide, consequent from naturally occurring antimicrobial peptide (AMPs) Cathelicidin-2 (CATH-2) and Immunomodulatory peptide Thymopentin (TP5) having dynamic and potent anti-inflammatory activities without hemolytic effect. The biocompatible mechanism of CATH-2TP5 is favored to explore new methodologies in the direction of biomedical applications. In this retrospectively study, an antiendotoxin and anti-inflammatory hybrid peptide CATH-2TP5 was emulated into pPICZα-A and successfully expressed in Pichia pastoris (P. pastoris). The recombinant CATH-2TP5 was purified through the Ni-affinity column and reversed-phase HPLC. The purified CATH-2TP5 peptide exhibited robust anti-endotoxin activity and significantly (p < 0.05) neutralized the effect of lipopolysaccharide (LPS). Furthermore, the down-regulated effect of CATH-2TP was more pronounced (p < 0.05) on LPS-induced cytotoxic effects, nitric oxide secretion and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß) in murine RAW264.7 macrophages. As associated to control and parental peptide the number of apoptotic cells was also contracted with the treatment of CATH-2TP5. Thus, we concluded that CATH-2TP5 peptide may be used in various biomedical applications as a therapeutic drug.

5.
Plant Cell ; 32(3): 703-721, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31919300

RESUMO

The phytohormone abscisic acid (ABA) and the Polycomb group proteins have key roles in regulating plant growth and development; however, their interplay and underlying mechanisms are not fully understood. Here, we identified an Arabidopsis (Arabidopsis thaliana) nodulin homeobox (AtNDX) protein as a negative regulator in the ABA signaling pathway. AtNDX mutants are hypersensitive to ABA, as measured by inhibition of seed germination and root growth, and the expression of AtNDX is downregulated by ABA. AtNDX interacts with the Polycomb Repressive Complex1 (PRC1) core components AtRING1A and AtRING1B in vitro and in vivo, and together, they negatively regulate the expression levels of some ABA-responsive genes. We identified ABA-INSENSITIVE (ABI4) as a direct target of AtNDX. AtNDX directly binds the downstream region of ABI4 and deleting this region increases the ABA sensitivity of primary root growth. Furthermore, ABI4 mutations rescue the ABA-hypersensitive phenotypes of ndx mutants and ABI4-overexpressing plants are hypersensitive to ABA in primary root growth. Thus, our work reveals the critical functions of AtNDX and PRC1 in some ABA-mediated processes and their regulation of ABI4.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Transdução de Sinais , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Sequência de Bases , Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Germinação/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Modelos Biológicos , Mutação/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Complexo Repressor Polycomb 1/genética , Ligação Proteica/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos
6.
Plant Physiol ; 181(3): 1075-1095, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31471454

RESUMO

Cellular redox status plays critical roles in cell division and differentiation, but the underlying mechanism is unclear. Here we explored the effect of redox status on stem cell identity in distal stem cells (DSCs) of Arabidopsis (Arabidopsis thaliana) roots. Treatment with the reductive reagent glutathione and the oxidative reagent H2O2 inhibited DSC differentiation, as did endogenously altering reactive oxygen species production via various mutations. This suggests that both highly reductive and oxidative environments inhibit specification of stem cell identity. In our observations of mutant components of the CLAVATA3/ENDOSPERM SURROUNDING REGION 40 (CLE40)-ARABIDOPSIS CRINKLY4 (ACR4)/CLAVATA1 (CLV1)-WUSCHEL RELATED HOMEOBOX5 (WOX5) module, both reductive and oxidative reagents influenced DSC differentiation in wox5-1 and clv1-1, but not in acr4-2 or cle40 mutant plants. The stability of the receptor-like kinase ACR4 is modulated by redox status through endocytosis in root tips. ACR4 with multiple Cys mutations in the tumor necrosis factor receptor (TNFR) extracellular domain failed to undergo endocytosis. ACR4 with a complete deletion of the TNFR domain was localized directly to endosomes, bypassing the plasma membrane. Both mutations affected DSC differentiation, but not seed filling. Conversely, the intracellular domain of the ACR4 protein is partially required for seed filling, but not for DSC differentiation. Our study uncovers an important biological role of the TNFR domain in redox-mediated endocytosis of ACR4 in root DSC differentiation.


Assuntos
Diferenciação Celular/fisiologia , Endocitose/fisiologia , Células-Tronco/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/genética , Endocitose/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Ácidos Indolacéticos/metabolismo , Oxirredução , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Sementes/metabolismo , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...